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Week 6: Deep learning for analyzing 
images and time series, wrap-up



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

“clown fish”

Learned

• Need to design constraints for what features are learned 
to account for structure in data (e.g., images, text, …)



Learning a neural net amounts to 
curve fitting

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Single-layer neural net example:

this is a function

output = softmax(np.dot(input, W) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code 
and are only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Single-layer neural net example:

Two-layer neural net example:

layer1_output = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(layer1_output, W2) + b2)

Learning a neural net: learning a simple computer program that maps 
inputs (raw feature vectors) to outputs (predictions)



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

“complex”
• Learn computer program that has more lines of code
• Some times, more parameters may be needed

• If so, more training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., ResNet for computer 
vision/image processing)



Keras Has Many Models Already



Also check out modelzoo.co

http://modelzoo.co


Image analysis with 
Convolutional Neural Nets  

(CNNs, also called convnets)



filter

Slide by Phillip Isola

Convolution
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Convolution
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Convolution
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Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input
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Convolution
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Convolution
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Convolution
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Very commonly used for:
• Blurring an image

• Finding edges
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2 2 2
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(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolutional Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter
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filters & biases (1 bias number per filter) 
are unknown and are learned!

add bias

add bias

add bias

apply 
activation

apply 
activation

apply 
activation



Convolutional Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Output images



Convolutional Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

number of kernels 
(3 in this case)



Convolutional Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

k



Convolutional Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k



Convolutional Layer

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k

∗

}

} d
d



Pooling

• Aggregate local information (“pool” together information)

• Produces a smaller image 
(each resulting pixel captures some “global” information)

• If “object” in input image shifts a little, output is the same



Max Pooling
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Convolutional layer (1 filter, for simplicity no bias)
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Max Pooling
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Max Pooling
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Max Pooling
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!

Convolutional layer (1 filter, for simplicity no bias)



Max Pooling and (Slight) Shift Invariance

1 0

0 0
1max pooling 

(2-by-2)

1
0 1

0 0 max pooling 
(2-by-2)

0 0

1 0
1max pooling 

(2-by-2)

0 0

0 1
1max pooling 

(2-by-2)

Small shift of 
“object” (e.g., a 
detected edge) 
in input image 
results in same 

output



Max Pooling and (Slight) Shift Invariance

1 0

0 0

1 0 0

0 0 0

0 0 0

1max pooling 
(2-by-2)

0max pooling 
(2-by-2)

Bigger shift in input can still change output

0 0 1

0 0 0

0 0 0



Basic Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

dense, 
softmax

Training label: 6

Loss/“error” error

28x28 image conv2d, 
ReLU

max 
pooling

2d

flatten



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net

flatten



CNNs

Demo



CNNs

• Learn convolution filters for extracting simple features

• Max pooling summarizes information and produces a smaller 
output and is invariant to small shifts in input objects

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations



Visualizing What a Deep Net Learned
• Very straight-forward for CNNs

• Plot filter outputs at different layers

• Plot regions that maximally activate an output neuron

Images: Francois Chollet’s “Deep Learning with Python” Chapter 5

Check course 
webpage for 

demo



Example: Wolves vs Huskies

Turns out the deep net learned that wolves are 
wolves because of snow…

Source: Ribeiro et al. “Why should I trust you? Explaining the 
predictions of any classifier.” KDD 2016.

➔ visualization is crucial!



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs

What if we had a video?



RNNs

… …

Feedforward NN’s: 
treat each video frame 

separately

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

… …

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

RNN layerTime series

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU



Example: SimpleRNN

current_state = np.zeros(num_neurons)

for input in input_sequence:

output = activation(np.dot(input, W) 
                    + np.dot(current_state, U) 
                    + b)

current_state = output

Parameters: weight matrices W & U, and bias vector b

Activation function could, for instance, be ReLU

Key idea: it’s like a dense layer in a for loop with some memory!

memory stored in current_state variable!



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

like a dense layer 
that has memory

RNN layer

readily chains together with 
other neural net layers

Time series

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

like a dense layer 
that has memory

RNN layer

readily chains together with 
other neural net layers

CN
N

Time series

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

like a dense layer 
that has memory

RNN layer

readily chains together with 
other neural net layers

CN
N

Time series

Cl
as

sifi
er

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU



RNNs

RNN layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

Cl
as

sifi
er



(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



RNNs

RNN layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use the 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Dense layer, 2 neurons, 
softmax activation



RNNs

Demo



RNNs: a little bit more detail



(Flashback) Example: SimpleRNN

current_state = np.zeros(num_neurons)

for input in input_sequence:

output = activation(np.dot(input, W) 
                    + np.dot(current_state, U) 
                    + b)

current_state = output

Parameters: weight matrices W & U, and bias vector b

Activation function could, for instance, be ReLU

Key idea: it’s like a dense layer in a for loop with some memory!

memory stored in current_state variable!



current_state = np.zeros(num_neurons)

for input in input_sequence:

output = activation(np.dot(input, W) 
                    + np.dot(current_state, U) 
                    + b)

current_state = output

memory stored in current_state variable!

outputs = []

outputs.append(output)



RNN layerTime series

output prediction



… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

outputs[t] 
= activation(np.dot(input_sequence[t], W) 
             + np.dot(outputs[t-1], U) 
             + b)

SimpleRNN tends to 
forget things quickly

…



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term 
memory!

But need some way 
to update long-term 

memory!
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Time 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Time 
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term 
memory!

But need some way 
to update long-term 

memory!

… …



Time 
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term 
memory!

But need some way 
to update long-term 

memory!

… …

Long-term 
memory updater Called a “long short-term 

memory” (LSTM) RNN
Remembers things 

longer than SimpleRNN



RNNs

• Neatly handles time series, remembering things over time

• An RNN layer by itself doesn’t take advantage of image/text 
structure!

• For images: combine with CNN basic building block 
(convolutional layer + pooling)

• For text: combine with embedding layer



Analyzing Times Series with CNNs
• Think about an image with 1 column, and where the rows 

index time steps: this is a time series!

• Think about a 2D image where rows index time steps, and 
the columns index features: this is a multivariate time series 
(feature vector that changes over time!)

• CNNs can be used to analyze time series but inherently the 
size of the filters used say how far back in time we look

• If your time series does not have long-range dependencies 
that require long-term memory, CNNs can do well already!

• If you need long-term memory, use RNNs



Some other deep learning topics



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of 
good parameter 

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative       at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative
In higher dimensions, this is called gradient descent  
(derivative in higher dimensions: gradient)



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L



Learning a Deep Net
Suppose the neural network has a single real number parameter w
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Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Victory!

Local minimum Better 
solution

In general: not obvious what error landscape looks like! 
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough

Popular optimizers 
(e.g., RMSprop, 

ADAM, AdaGrad, 
AdaDelta) are variants 
of gradient descent



2
1

0
-1

x
-2

Peaks

-3-3

-2
y

-1

0

1

2

L(w)

w2
w1

Learning a Deep Net
2D example

Slide by Phillip Isola



Remark: In practice, deep nets often 
have > millions of parameters, so very 

high-dimensional gradient descent



Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net 
is a function 
composition!

xi

yi

f1(xi ) f2(f1(xi ))

L(f2(f1(xi )),yi )

1
n

n∑

i=1

L(f2(f1(xi )),yi )

Overall loss:

Gradient: ∂
1
n

∑n
i=1 L(f2(f1(xi )),yi )

∂θ



Gradient Descent
Training 
example 

1

Neural 
net

loss 1

Training 
example 

2

Neural 
net

loss 2

Training 
example 

3

Neural 
net

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

Neural 
net

Neural 
net

Neural 
net

…

loss 4 loss 5 loss n…
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We have to compute lots 
of gradients to help the 
skier know where to go!

Computing gradients 
using all the training data 
seems really expensive!

and move skier
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SGD: compute gradient using only 1 training example at a time  
(can think of this gradient as a noisy approximation of the “full” gradient)
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SGD: compute gradient using only 1 training example at a time  
(can think of this gradient as a noisy approximation of the “full” gradient)

compute gradient
and move skier

An epoch refers to 1 full pass 
through all the training data



Mini-Batch Gradient Descent
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Mini-Batch Gradient Descent
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Batch size: how many 
training examples we 

consider at a time 
(in this example: 2)



Best variant of SGD to use? 
Best # of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower 
than CPU!) if you choose # epochs/batch size poorly!!!



Dealing with Small Datasets
Data augmentation: generate perturbed versions of your 

training data to get larger training dataset

Training label: cat
Training image Mirrored

Still a cat!
Rotated & translated

Still a cat!
We just turned 1 training example in 3 training examples

Allowable perturbations depend on data  
(e.g., for handwritten digits, rotating by 180 
degrees would be bad: confuse 6’s and 9’s)



Dealing with Small Datasets
Fine tuning: if there’s an existing pre-trained neural net, you 

could modify it for your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset 
size is small, on the order of 1000 images

Strategy: take existing pre-trained CNN for ImageNet 
classification and change final layer to do classification between 

Tesla’s and Toyota’s rather than classifying into 1000 objects



Dealing with Small Datasets
Fine tuning: if there’s an existing pre-trained neural net, you 

could modify it for your problem that has a small dataset

Example: sentiment analysis RNN demo

Text Positive/negative 
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

We fixed the weights here to come from GloVe 
and disabled training for this layer!

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison



Generate Fake Data that Look Real

Noise

Real training 
example

Deep 
net

Fake 
training 
example

Deep net 
classifier Real/fakePick 1

Counterfeiter tries to get better 
at tricking the cop

Cop tries to get better at telling 
which examples are real vs fake

Counterfeiter Cop

Terminology: counterfeiter is the generator, cop is the discriminator

Unsupervised approach: generate data that look like training data
Example: Generative Adversarial Network (GAN)

Other approaches: variational autoencoders, pixelRNNs/pixelCNNs



Generate Fake Data that Look Real

Google DeepMind’s WaveNet makes fake audio that sounds like 
whoever you want using pixelRNNs (Oord et al 2016)

Fake celebrities generated by NVIDIA using GANs 
(Karras et al Oct 27, 2017)



Generate Fake Data that Look Real

Image-to-image translation results from UC Berkeley using GANs 
(Isola et al 2017, Zhu et al 2017)



Generate Fake Art

Source: https://www.npr.org/2018/10/22/659680894/a-i-produced-portrait-will-go-up-for-auction-
at-christie-s

October 2018: estimated to go for $7,000-$10,000
10/25/2018: Sold for $432,500



AI News Anchor

Source: https://www.bbc.com/news/technology-46136504



Harrison Ford as Young Han Solo

Source: https://www.theverge.com/2018/10/17/17990162/deepfake-edits-harrison-ford-
han-solo-a-star-wars-story-alden-ehrenreich



reward

update agent’s state

Deep Reinforcement Learning

Deep 
net

score for 
different 

(state, action) 
pairs

AI’s 
current 
state

AI agent

Environment

take 
action

The machinery behind AlphaGo and similar systems



Unstructured Data Analysis

Data

The dead body
Some times you 
have to collect 
more evidence!

Finding Structure InsightsQuestion

When? Where? 
Why? How? 
Perpetrator 
catchable?

Puzzle solving, 
careful analysis

The evidence
This is provided 
by a practitioner Exploratory data 

analysis
Answer original 

question

There isn’t always a follow-up prediction problem to solve



Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Come up with quantitative metrics that make sense for 

your problem, and use these metrics to evaluate models 
(think about how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)
• Set up “self-supervised” learning task

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting 
results in the context of your original problem!

• There is a lot we did not cover — keep learning!


